Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Genet ; 54(4): 382-392, 2022 04.
Article in English | MEDLINE | ID: covidwho-1730302

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2-2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10-8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10-13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genome-Wide Association Study , Humans , Risk Factors , SARS-CoV-2/genetics
2.
PLoS One ; 15(11): e0242182, 2020.
Article in English | MEDLINE | ID: covidwho-922709

ABSTRACT

BACKGROUND: Empirical data on conditions that increase risk of coronavirus disease 2019 (COVID-19) progression are needed to identify high risk individuals. We performed a comprehensive quantitative assessment of pre-existing clinical phenotypes associated with COVID-19-related hospitalization. METHODS: Phenome-wide association study (PheWAS) of SARS-CoV-2-positive patients from an integrated health system (Geisinger) with system-level outpatient/inpatient COVID-19 testing capacity and retrospective electronic health record (EHR) data to assess pre-COVID-19 pandemic clinical phenotypes associated with hospital admission (hospitalization). RESULTS: Of 12,971 individuals tested for SARS-CoV-2 with sufficient pre-COVID-19 pandemic EHR data at Geisinger, 1604 were SARS-CoV-2 positive and 354 required hospitalization. We identified 21 clinical phenotypes in 5 disease categories meeting phenome-wide significance (P<1.60x10-4), including: six kidney phenotypes, e.g. end stage renal disease or stage 5 CKD (OR = 11.07, p = 1.96x10-8), six cardiovascular phenotypes, e.g. congestive heart failure (OR = 3.8, p = 3.24x10-5), five respiratory phenotypes, e.g. chronic airway obstruction (OR = 2.54, p = 3.71x10-5), and three metabolic phenotypes, e.g. type 2 diabetes (OR = 1.80, p = 7.51x10-5). Additional analyses defining CKD based on estimated glomerular filtration rate, confirmed high risk of hospitalization associated with pre-existing stage 4 CKD (OR 2.90, 95% CI: 1.47, 5.74), stage 5 CKD/dialysis (OR 8.83, 95% CI: 2.76, 28.27), and kidney transplant (OR 14.98, 95% CI: 2.77, 80.8) but not stage 3 CKD (OR 1.03, 95% CI: 0.71, 1.48). CONCLUSIONS: This study provides quantitative estimates of the contribution of pre-existing clinical phenotypes to COVID-19 hospitalization and highlights kidney disorders as the strongest factors associated with hospitalization in an integrated US healthcare system.


Subject(s)
Coronavirus Infections/epidemiology , Hospitalization/statistics & numerical data , Kidney Diseases/epidemiology , Pneumonia, Viral/epidemiology , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Electronic Health Records , Female , Humans , Kidney Failure, Chronic/epidemiology , Male , Middle Aged , Pandemics , Pennsylvania/epidemiology , Renal Dialysis , Renal Insufficiency, Chronic/epidemiology , Retrospective Studies , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL